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Abstract— Optimal transport (OT) is a framework that can
guide the design of efficient resource allocation strategies in a
network of multiple sources and targets. To ease the computa-
tional complexity of large-scale transport design, we first de-
velop a distributed algorithm based on the alternating direction
method of multipliers (ADMM). However, such a distributed
algorithm is vulnerable to sensitive information leakage when
an attacker intercepts the transport decisions communicated
between nodes during the distributed ADMM updates. To this
end, we propose a privacy-preserving distributed mechanism
based on output variable perturbation by adding appropriate
randomness to each node’s decision before it is shared with
other corresponding nodes at each update instance. We show
that the developed scheme is differentially private, which
prevents the adversary from inferring the node’s confidential
information even knowing the transport decisions. Finally, we
corroborate the effectiveness of the devised algorithm through
case studies.

Index Terms— Discrete Optimal Transport, Distributed Al-
gorithm, Differential Privacy, Resource Allocation

I. INTRODUCTION

The optimal transport (OT) paradigm can be leveraged to
guide the most efficient allocation of a limited amount of
resources from a set of sources to a set of targets by consid-
ering their heterogeneous preferences [1]. The standard OT
framework computes the transport strategy in a centralized
manner, which requires the source and target nodes to send
their information to a centralized transport planner. This
centralized computation mechanism is not scalable when the
transport network includes a large number of participants.
Thus, it is imperative to design a computationally efficient
scheme that applies to large-scale transport design.

To this end, distributed algorithm based on the alternating
direction method of multipliers (ADMM) can be used to
achieve this goal [1], [2]. In the distributed computation
scheme, each node communicates with the connected nodes
directly regarding the transport decisions and reaches a con-
sensus through iterative negotiations. Under this paradigm,
the central planner is not necessary to coordinate the resource
matching. On the one hand, the distributed OT design elim-
inates the necessity of a centralized communication network
based on which each node reports their preference infor-
mation to the central planner. Instead, the communication
occurs between each pair of connected source and target
nodes enabled by a peer-to-peer network. Thus, the ADMM-
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based distributed algorithm does not require sharing all the
nodes’ information over the network.

However, the distributed OT algorithm still faces adver-
sarial threats [3]. Specifically, the nodes need to communi-
cate their computed resource transport preferences with the
connected nodes at each update step in the algorithm. This
information could be intercepted by an adversary during its
transmission over the communication network (e.g., through
eavesdropping attack). The attacker can then use it to infer
the private information at each participating node (e.g.,
node’s utility parameters used for the design of transport
plan).

The privacy concerns of the distributed OT motivate us to
develop an efficient privacy-preserving mechanism that can
protect the nodes’ sensitive utility information. To do this,
we resort to the powerful differential privacy technique [4],
[5]. Specifically, we develop an output variable perturbation-
based differentially private distributed OT scheme. In this
algorithm, instead of sharing the authentic transport strategies
directly between connected source and target nodes, each
node perturbs their transport decisions by adding a random
noise drawn from an appropriate distribution with specified
parameters at each step. The proposed algorithm prevents
leakage of sensitive information of participants in the net-
work even if the transport strategies shared between nodes
during updates are captured by the adversary.

The contributions of this paper are presented as follows.
1) We develop a distributed OT design framework based

on the alternating direction method of multipliers to
compute the OT strategies efficiently.

2) We incorporate privacy consideration into the dis-
tributed OT and propose a differentially private dis-
tributed OT algorithm based on an output variable
perturbation mechanism.

3) We demonstrate the effectiveness of the developed
algorithm through case studies and characterize the
trade-off between a node’s privacy and transport utility.

Related Works. Differential privacy has been applied to
many fields, especially the ones in artificial intelligence and
machine learning. For example, perturbation-based ADMM
algorithms were developed to improve privacy in classifi-
cation learning problems [6], [7]. Differential privacy has
also been leveraged to investigate privacy issues in empirical
risk minimization [8], [9], support vector machines [10] and
deep learning [11]. Additionally, differential privacy has been
applied to improve the privacy of fog computing [12], and
safety of vehicle network [13]. In this work, we address



the privacy concerns in the ADMM-based distributed OT
algorithm based on differential privacy and develop a scheme
that has a theoretical guarantee to maintain the privacy of the
information at each transport node.

The rest of this paper is organized as follows. Section
II presents the basics of discrete optimal transport over a
network and develops a distributed algorithm to compute
the solution. Section III concerns the privacy of the OT
framework and proposes a differentially private distributed
OT algorithm. Section IV presents case studies to illustrate
the results, and Section V concludes the paper.

II. DISCRETE OPTIMAL TRANSPORT OVER NETWORKS
AND DISTRIBUTED ALGORITHM

This section presents the framework of discrete optimal
transport over a network and then develops a distributed
algorithm to compute the optimal transport plan.

A. Discrete Optimal Transport

We denote by X := {1, ..., |X |} a set of destina-
tion/target nodes that receive the resources, and Y :=
{|X |+ 1, ..., |X |+ |Y |} a set of origin/source nodes that
distribute resources to the targets over a transport network.
Additionally, we define P =X ∪Y as the set of all nodes.
Each source node y ∈ Y is connected to a number of target
nodes denoted by Xy, representing that y can choose to
allocate its resources to a specific group of destinations Xy.
Similarly, each target node x∈X can receive resources from
multiple source nodes, and this set of resource suppliers to
target x is denoted by Yx. It can be seen that the resources are
transported over a bipartite network, where one side of the
network consists of all source nodes and the other includes all
destination nodes. This bipartite network is not necessarily
complete because of constrained matching policies between
participants. We further denote by E the set of all feasible
transport paths in the network, i.e., E := {{x,y}|x ∈Xy,y ∈
Y }. Here, E also refers to the set of all edges in the
established bipartite graph for resource transportation.

We next denote by πxy ∈ R+ the amount of resources
transported from the origin node y ∈ Y to the destination
node x ∈ X , where R+ is the set of nonnegative real
numbers. Let Π := {πxy}x∈Xy,y∈Y be the designed transport
plan. Then, the centralized optimal transport problem can be
formulated as follows:

max
Π

∑
x∈X

∑
y∈Yx

txy(πxy)+ ∑
y∈Y

∑
x∈Xy

sxy(πxy)

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X ,

q
y
≤ ∑

x∈Xy

πxy ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

(1)

where txy : R+→R and sxy : R+→R are utility functions for
target node x and source node y, respectively. Furthermore,
p̄x ≥ px ≥ 0, ∀x ∈X and q̄y ≥ q

y
≥ 0, ∀y ∈ Y . The con-

straints px ≤∑y∈Yx πxy ≤ p̄x and q
y
≤∑x∈Xy πxy ≤ q̄y capture

the limitations on the amount of requested and transferred
resources at the target x and source y, respectively.

We have the following assumption on the utility functions.

Assumption 1. The utility functions txy and sxy are concave
and monotonically increasing on πxy, ∀x ∈ X ,∀y ∈ Y .
Moreover, they are continuously differentiable with t ′xy ≤ ρ

and s′xy ≤ ρ , where ρ is a positive constant.

A rich class of functions satisfy the conditions in Assump-
tion 1. For example, the utility functions txy and sxy can be
linear on πxy, indicating a linear growth of benefits on the
amount of transferred and consumed resources.

B. Distributed Optimal Transport

Next, we establish a distributed algorithm for computing
the optimal transport strategy in (1). Our first step is to
reformulate the optimization problem by introducing an-
cillary variables πxy,t and πxy,s. The additional subscripts t
and s indicate that the corresponding parameters belong to
the target node or the source node, respectively. We then
set πxy = πxy,t and πxy = πxy,s, indicating that the solutions
proposed by the targets and sources are consistent. This
reformulation facilitates the design of a distributed algorithm
which allows us to iterate through the process in obtaining
the optimal transport plan. To this end, the reformulated
optimal transport problem is presented as follows:

min
Πt∈Ft ,Πs∈Fs,Π

− ∑
x∈X

∑
y∈Yx

txy(πxy,t)− ∑
y∈Y

∑
x∈Xy

sxy(πxy,s)

s.t. πxy,t = πxy, ∀{x,y} ∈ E ,

πxy,s = πxy, ∀{x,y} ∈ E ,

(2)

where Πt := {πxy,t}x∈Xy,y∈Y , Πs := {πxy,s}x∈X ,y∈Yx , Ft :=
{Πt |πxy,t ≥ 0, px ≤ ∑y∈Yx πxy,t ≤ p̄x, {x,y} ∈ E }, and Fs :=
{Πs|πxy,s ≥ 0,q

y
≤ ∑x∈Xy πxy,s ≤ q̄y, {x,y} ∈ E }.

We resort to the alternating direction method of multipliers
(ADMM) [14] to develop a distributed computational algo-
rithm. First, let αxy,s and αxy,t be the Lagrangian multipliers
associated with the constraint πxy,s = πxy and πxy,t = πxy,
respectively. The Lagrangian function associated with the
optimization problem (2) can then be written as follows:

L(Πt ,Πs,Π,αxy,t ,αxy,s) =− ∑
x∈X

∑
y∈Yx

txy(πxy,t)

− ∑
y∈Y

∑
x∈Xy

sxy(πxy,s)+ ∑
x∈X

∑
y∈Yx

αxy,t(πxy,t −πxy)

+ ∑
y∈Y

∑
x∈Xy

αxy,s(πxy−πxy,s)+
η

2 ∑
x∈X

∑
y∈Yx

(πxy,t −πxy)
2

+
η

2 ∑
y∈Y

∑
x∈Xy

(πxy−πxy,s)
2,

(3)

where η > 0 is a positive scalar constant controlling the
convergence rate in the algorithm designed below.

Note that in (3), the last two terms η

2 ∑x∈X ∑y∈Yx(πxy,t −
πxy)

2 and η

2 ∑y∈Y ∑x∈Xy(πxy−πxy,s)
2, acting as penalization,

are quadratic. Hence, the Lagrangian function L is strictly
convex, ensuring the existence of a unique optimal solution.



We next apply ADMM to the minimization problem in
(2). The designed distributed algorithm is presented in the
following proposition.

Proposition 1. The iterative steps of applying ADMM to
problem (2) are summarized as follows:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

txy(πxy,t)

+ ∑
y∈Yx

αxy,t(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t −πxy(k))2,
(4)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)

− ∑
x∈Xy

αxy,s(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2,

(5)

πxy(k+1) = argmin
πxy
−αxy,t(k)πxy +αxy,s(k)πxy

+
η

2
(πxy,t(k+1)−πxy)

2 +
η

2
(πxy−πxy,s(k+1))2,

(6)

αxy,t(k+1) = αxy,t(k)+η(πxy,t(k+1)−πxy(k+1))2, (7)

αxy,s(k+1) = αxy,s(k)+η(πxy(k+1)−πxy,s(k+1))2, (8)

where Πx̃,t := {πxy,t}y∈Yx,x=x̃ represents the solution at target
node x̃ ∈ X , and Πỹ,s := {πxy,s}x∈Xy,y=ỹ represents the
proposed solution at source node ỹ∈Y . In addition, Fx,t :=
{Πx,t |πxy,t ≥ 0,y ∈ Yx, px ≤ ∑y∈Yx πxy,t ≤ p̄x}, and Fy,s :=
{Πy,s|πxy,s ≥ 0,x ∈Xy,qy

≤ ∑x∈Xy πxy,s ≤ q̄y}.

Proof. Let ~x = [~ΠT
x,t ,~Π

T ]T , ~y = [~ΠT ,~ΠT
y,s]

T , and α =
[{αxy,t}T ,{αxy,s}T ]T , where~ denotes the vectorization op-
erator. We note that these vectors are all 2|E | × 1, where
|E | denotes the number of connections between targets and
sources. Now we can write the constraints in matrix form
such that A~x =~y where A = [I,0,I,0]. Here I and 0 denote
the identity and zero matrices respectively, both of which are
|E |× |E |. Next, we note that ~x ∈F~x,t and ~y ∈F~y,s, where
F~x,t = {~x|πxy,t ≥ 0, px≤∑y∈Yx πxy,t ≤ p̄x,{x,y}∈E }, F~y,s :=
{~y|πxy,s ≥ 0,q

y
≤ ∑x∈Xy πxy,s ≤ q̄y,{x,y} ∈ E }. In turn we

can solve the minimization in (2) with the iterations:
1) ~x(k + 1) ∈ argmin~x∈Fx,t L(~x,~y(k),α(k)); 2) ~y(k + 1) ∈
argmin~y∈Fy,s L(~x(k),~y,α(k)); 3) α(k+1) = α(k)+η(A~x(k+
1)−~y(k+ 1)), whose convergence is proved [14]. Because
there is no coupling among Πx,t ,Πy,s,πxy,αxy,t , and αxy,s, the
above iterations can be decomposed to (4)-(8). �

We can simplify steps (4)-(8) down to four steps, and the
results are summarized below.

Proposition 2. The iterations (4)-(8) can be simplified as
follows:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

txy(πxy,t)

+ ∑
y∈Yx

αxy(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t −πxy(k))
2 ,

(9)

Algorithm 1 Distributed OT Algorithm
1: while Πx,t and Πy,s not converging do
2: Compute Πx,t(k+1) using (9), for all x ∈Xy
3: Compute Πy,s(k+1) using (10), for all y ∈ Yx
4: Compute πxy(k+1) using (11), for all {x,y} ∈ E
5: Compute αxy(k+1) using (12), for all {x,y} ∈ E
6: end while
7: return πxy(k+1), for all {x,y} ∈ E

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)

− ∑
x∈Xy

αxy(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2 ,

(10)

πxy(k+1) =
1
2
(πxy,t(k+1)+πxy,s(k+1)) , (11)

αxy(k+1) = αxy(k)+
η

2
(πxy,t(k+1)−πxy,s(k+1)) . (12)

Proof. The simplification can be obtained straightforwardly
by first characterizing the solution to (6) and then substituting
it into (7) and (8). �

For convenience, we summarize the distributed OT algo-
rithm into Algorithm 1.

III. DIFFERENTIALLY PRIVATE DISTRIBUTED OPTIMAL
TRANSPORT

In this section, we first present the privacy concerns in the
developed distributed OT in Section II. We then develop a
differentially private distributed OT algorithm that promotes
nodes’ privacy explicitly during decision updates.

A. Privacy Concerns in the Distributed OT

In the previous distributed OT algorithm, the intermediate
results are shared between connected nodes during updates.
This sharing mechanism raises privacy concerns as an adver-
sary that can access this result (e.g., through eavesdropping
attack) has the ability to infer the participants’ private
information. Specifically, the adversary could leverage the
compromised information Πx,t(k) and Πy,s(k) at each update
step, k, to infer the node’s private information including the
sensitive preference parameters in the utility functions txy and
sxy. We denote the set of private preference information at
node p by Dp, p ∈P .

We next use an example to further illustrate node’s private
information set. Specifically, we consider utility functions
admitting a linear form for both the sender and receiver:
txy(πxy) = δxyπxy and sxy(πxy) = γxyπxy, where δxy,γxy ∈ R+.
Then, for a target node x ∈ X , we have set Dx = {δxy :
∀y ∈ Yx}. Similarly for a source node y ∈ Y , we have
set Dy = {γxy : ∀x ∈Xy}. The information contained in Dp
is crucial for developing optimal transport plans. Leakage
of such private information is undesired in many resource
allocation scenarios, especially those with societal impacts.
For example, in the distribution of scarce vaccine resources,
these preference parameters could indicate the severity of
epidemics in different neighborhoods (modeled by nodes). It



is obvious that each participant does not want to leak this
piece of information to other unauthorized parties.

To this end, we aim to protect the privacy of each
node in the transport network using differential privacy [5].
Specifically, we propose to add randomness to the transport
decisions communicated between each pair of source-target
nodes during updates, preventing the adversary from learning
the sensitive utility parameters of nodes simply based on the
transport decisions. To achieve this goal, first, let Dp and
D′p be two information/data sets differ by one data point
(utility parameter). In other words, their Hamming Distance
is equal to 1, denoted by H(Dp,D′p) = 1. Here, H(Dp,D′p) =

∑
|Dp|
i=1 1{i : di 6= d′i}, where di and d′i denote the ith data point

in the information set Dp and D′p, respectively. Recall that the
data points in these sets refer to the nodes’ utility parameters
which we aim to protect from leakage under the condition
that the adversary intercepts the transport plans. The formal
definition of differential privacy is presented below.

Definition 1 (βp(k)-Differential Privacy). Consider the
transport network G = {P,E }, where P is composed of
both source nodes and target nodes, and E is a set of edges
connecting the nodes. At each node p∈P , there is an infor-
mation set Dp which is used to compute the resource trans-
port plan. Let R be a randomized counterpart of Algorithm 1.
Further, let β (k) =

(
β1(k),β2(k), ...,β|P|(k)

)
∈ R|P|+ , where

βp(k) ∈ R+ is the privacy parameter of node p at iteration
k. Consider the outputs Πx,t(k) and Πy,s(k) at iteration k
of Algorithm 1. Let D′p be any information set such that
H(D′p,Dp) = 1 and Π̃t

x(k) and Π̃s
y(k) be the corresponding

outputs of Algorithm 1 while using the information set D′p.
The algorithm R is βp(k)-differentially private for any D′p
for all nodes p ∈P and for all possible sets of outcome
solutions S, if the following condition is satisfied at every
iteration k:

Pr[Πp(k) ∈ S]≤ exp(βp(k)) ·Pr[Π̃p ∈ S], (13)

where Πp(k) =

{
Πp,t(k), if p ∈X ,

Πp,s(k), if p ∈ Y ,
and Π̃p(k) ={

Π̃p,t(k), if p ∈X ,

Π̃p,s(k), if p ∈ Y .

B. Output Variable Perturbation

In order to ensure that the sensitive preference information
at each node remains private when transport plans are pub-
lished over the network, we develop a differentially private
algorithm based on output variable perturbation. This algo-
rithm involves adding random noise to the output decision
variables Πx,t(k+ 1) and Πy,s(k+ 1) during updates. More
specifically, the random noise vectors, εx(k+1) ∈ R|Yx| and
εy(k+1) ∈ R|Xy| are added to the variables Πx,t(k+1) and
Πy,s(k+1) obtained by (9) and (10), respectively.

Recall that p∈P =X ∪Y and thus p = x, ∀x∈X , and
p = y, ∀y ∈ Y . The random noise vector εp(k) is generated
according to a distribution with density function Fp(ε) ∼

Fig. 1. Illustration of the differentially private distributed OT scheme. The
information exchanged between nodes is susceptible to be intercepted by
the adversary (e.g., by eavesdropping attack to the wireless channel). Hence,
an appropriate random noise is added to the outputs at each update step.

e−ξp(k)||ε||. Here, ξp(k) =
ρ

η
βp(k), where βp is a privacy term

at each node p.
Thus, the proposed solutions at the target node x and the

source node y at step k+1 admit

Π
∗
x,t(k+1) = Πx,t(k+1)+ εx(k+1),

Π
∗
y,s(k+1) = Πy,s(k+1)+ εy(k+1),

(14)

where Π∗x,t and Π∗x,t are perturbed solutions of Πt
x and

Πt
x, respectively. The distributed OT algorithm with output

perturbation includes the following steps:

Πx,t(k+1) ∈ arg min
Πt

x∈F t
x
− ∑

y∈Yx

txy(πxy,t)

+ ∑
y∈Yx

αxy(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t −πxy(k))
2 ,

(15)

Π
∗
x,t(k+1) = Πx,t(k+1)+ εx(k+1), (16)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)

− ∑
x∈Xy

αxy(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2 ,

(17)

Π
∗
y,s(k+1) = Πy,s(k+1)+ εy(k+1), (18)

π
∗
xy(k+1) =

1
2
(
π
∗
xy,t(k+1)+π

∗
xy,s(k+1)

)
, (19)

αxy(k+1) = αxy(k)+
η

2
(
π
∗
xy,t(k+1)−π

∗
xy,s(k+1)

)
. (20)

As a result of the perturbation in (16) and (18), Π∗x,t(k)
and Π∗y,s(k) are randomized. Specifically, within each it-
eration, the node perturbs the output variable Πx,t(k) or
Πy,s(k) respectively in order to obtain Π∗x,t(k) or Π∗y,s(k).
The proposed scheme is further illustrated in Fig. 1. It is
important to note that the information sets at each node, i.e.,
Dp containing sensitive utility parameters, remain untouched
and not perturbed. Due to the random output perturbation, the
transport strategy does not converge to a deterministic value
compared with the distributed algorithm in Section II-B.



Instead, the algorithm converges approximately and oscillates
within a bounded interval. The magnitude of the oscillation
is directly related to the differential privacy parameter βp
chosen by each node p∈P . When βp becomes larger, ∀p∈
P , the differentially privacy algorithm tends to converge to
the same solution yielded by Algorithm 1. Since noise is
added to each output, the solution will oscillate around the
optimal solution. To ensure convergence we check that the
oscillation is within some threshold. For convenience, the
differentially private distributed OT algorithm based on the
output variable perturbation is summarized in Algorithm 2.

Algorithm 2 Differentially Private Distributed OT Algorithm
With Output Variable Perturbation

1: for k = 0,1,2, ... do
2: for x ∈Xy do
3: Compute Πx,t(k+1) using (15)
4: Compute Π∗x,t(k+1) using (16)
5: end for
6: for y ∈ Yx do
7: Compute Πy,s(k+1) using (17)
8: Compute Π∗y,s(k+1) using (18)
9: end for

10: Compute π∗xy(k+1) using (19), for all {x,y} ∈ E
11: Compute αxy(k+1) using (20), for all {x,y} ∈ E
12: end for
13: return π∗xy(k+1), for all {x,y} ∈ E

We further have the following Theorem 1 to theoretically
guarantee the privacy-preserving property of Algorithm 2.

Theorem 1. The proposed Algorithm 2 is β -differentially
private with βp(k) for node p at iteration k. Let Q(Π∗x,t |Dx)
and Q(Π∗x,t |D′x) be the probability density functions for Π∗x,t
given the information sets Dx and D′x such that H(Dx,D′x) =
1. The ratio of probability density of Π∗x,t is bounded:

Q(Π∗x,t(k)|Dx)

Q(Π∗x,t(k)|D′x)
≤ eβx(k). (21)

It follows similarly for the probability density of Π∗y,s, i.e.,

Q(Π∗y,s(k)|Dy)

Q(Π∗y,s(k)|D′y)
≤ eβy(k). (22)

Note that (21) and (22) directly imply
Pr(Π∗x,t (k)|Dx)

Pr(Π∗x,t (k)|D′x)
≤ eβx(k)

and
Pr(Π∗y,s(k)|Dy)

Pr(Π∗y,s(k)|D′y)
≤ eβy(k), respectively.

Proof. We first show the bounded ratio in (21). We
have

Q(Π∗x,t (k)|Dx)

Q(Π∗x,t (k)|D′x)
= Fx(εx(k))

Fx(ε ′x(k))
= e−ξx(k)||εx(k)||

e−ξx(k)||ε ′x(k)||
. Our goal is

to find a ξx(k) such that the following inequal-
ity holds ξx(k)(||εx(k)|| − ||ε ′x(k)||) ≤ βp(k). Let W =
argminΠx,t fx(k|Dx) and W ′ = argminΠx,t fx(k|D′x), where
fx(k) is the objective function for the target node x ∈ X
at iteration k, shown in (15). Also, let g and h be defined
at each node x ∈ X such that g(Π∗x,t(k)) = fx(k|Dx) and
h(Π∗x,t(k)) = fx(k|D′x)− fx(k|Dx).

Therefore, h(Π∗x,t(k)) = −t̃xy(πxy,t) + txy(πxy,t), where t̃xy
refers to the altered utility function due to the difference
between D′x and Dx. Assumption 1 implies that fx(k|Dp) =
g(Π∗x,t(k)) and fx(k|D′x) = g(Π∗x,t(k)) + h(Π∗x,t(k)) are both
convex. We differentiate h(Π∗x,t(k)) with respect to Π∗x,t(k)
and get:

∇h(Π∗x,t(k)) =−t̃ ′xy(πxy,t)+ t ′xy(πxy,t).

Assumption 1 further implies that 0 ≤ t ′xy ≤ ρ . Thus,
||∇h(Π∗x,t)|| ≤ ρ . From the definitions of W and W ′, we have
∇g(W )=∇g(W ′)+∇h(W ′)= 0. Based on Lemma 14 in [15]
and knowing that g(·) is η-strongly convex, the following
inequality holds: 〈∇g(W )−g(W ′),W −W ′〉 ≥ η ||W −W ′||2.
Thus, by Cauchy-Schwartz inequality, we obtain

||W −W ′|| · ||∇h(W ′)|| ≥ (W −W ′)T
∇h(W ′) =

〈∇g(W )−g(W ′),W −W ′〉 ≥ η ||W −W ′||2.

Dividing both sides by η ||W −W ′|| yields ||W −W ′|| ≤
1
η
||∇h(W ′)|| ≤ ρ

η
. From (16), we have ||W−W ′||= ||εx(k)−

ε ′x(k)|| ≤ 1
η
||∇h(W ′)||. Thus, we obtain

ξx(k)(||εx(k)||−||ε ′x(k)||)≤ ξx(k)(||εx(k)−ε
′
x(k)||)≤

ρ

η
ξx(k).

By choosing ξx(k) =
η

ρ
βp(k), the inequality ξx(k)(||εx(k)−

ε ′x(k)||)≤ βp(k) holds. Thus, the output variable perturbation
is βp-differentially private for target node x ∈X . The proof
follows identically for the perturbed output variable Π∗y,s(k)
at the source node y ∈ Y and hence omitted. �

In summary, the proposed Algorithm 2 guarantees the pri-
vacy of all participating nodes during their decision sharing.

IV. NUMERICAL CASE STUDIES

In this section, we corroborate the effectiveness of the
developed differentially private algorithm and show how the
added privacy impacts the transport plan and its efficiency.

We construct a transport network with four source nodes
and thirty target nodes in which every source node is
connected to all target nodes, i.e., the network is complete.
The upper bounds at the target nodes p̄x are kept small
(smaller than 5), while the upper bounds at the source nodes
q̄y are relatively larger (between 20 and 40). Such selection
yields that the resources at the origin can be transported
to heterogeneous target nodes. Additionally, we consider
linear utility functions txy(πxy) = δxyπxy, and sxy(πxy) =
γxyπxy,∀{x,y} ∈ E . The utility parameters δxy and γxy are
randomly chosen integers between 1 and 5 for each pair of
connection, ∀{x,y} ∈ E .

In the following study, we investigate the impact of privacy
parameter βp on the transport utility. According to the
definition, a smaller βp yields a higher level of privacy. We
compare the results for two sets of βp. For the first one, we
assign a value of 1 to βp, p ∈P . For the larger value of βp
we use 1000. Furthermore, we select η = 1 and ρ = 2.

We leverage the developed algorithms, Algorithms 1 and
2, to compute the transport plans. The results are shown in
Fig. 2. First, we observe that in Fig. 2(a), the trajectory of
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Fig. 2. (a) shows the performance of the proposed algorithms. (b) depicts the optimal transport plans designed by the central planner (CP) and the
solution given by the distributed differentially private (DP) algorithm. (c) shows an increase of the privacy level (smaller βp) decreases the transport utility,
reflecting the trade-off between privacy and transport efficiency.

transport plan yielded by the differentially private algorithm
converges approximately to a certain value. The oscillation
at the tail is due to the random noise added to the decision at
each output perturbation step. We can also see that when βp
is small, the resulting social utility (i.e., transport efficiency),
which is an aggregation of the utilities of all participating
nodes, is relatively small. In comparison, when βp is large,
the social utility is close to the one returned by Algorithm
1 where differential privacy is not incorporated. Fig. 2(c)
further shows this phenomenon and reveals the inherent
trade-off between the amount of added privacy and the
transport efficiency. Fig. 2(b) illustrates how the privacy
factor affects the transport plan. The decreased optimality
due to the privacy promotion indicates that the resource
allocation is no longer taking full advantage of how much
source nodes can provide or how much target nodes can
request. For example, the target node 12 can request at most
5 units of resources, and does so when privacy is not added
to the algorithm. When privacy is concerned, it only requests
and receives 4.2 units of resources and hence the social utility
is decreased.

V. CONCLUSION

This paper has developed a differentially private dis-
tributed optimal transport algorithm with a theoretical guar-
antee of achieved privacy. The algorithm protects the sensi-
tive information at each node by perturbing the output of the
transport schemes shared between connected nodes during
updates. Under the designed mechanism, even if the transport
decision is intercepted during its transmission, the adversary
still cannot discover the underlying sensitive information
used in the transport strategy design. The privacy level for
each node can be determined appropriately by considering
its trade-off with the resulting transport efficiency. Future
work includes extending the current model-based distributed
optimal transport framework to data-driven learning-based
optimal transport while considering data privacy in the
learning process.
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